

YEAR 12 MATHEMATICS SPECIALIST SEMESTER ONE 2018 TEST 3: Vectors and Vector Calculus

Name: _____

Friday 11 May

Mark /48 = %

- Answer all questions neatly in the spaces provided. Show all working.
- You are permitted to use the Formula Sheet in **both** sections of the test.
- You are permitted one A4 page (one side) of notes in the calculator assumed section.

Calculator free section Suggested time: ~25 minutes /22

Question 1 (3 marks)

The vector form of a sphere is given by $\left| \underline{r} - (3\underline{i} - 2\underline{j} + 4\underline{k}) \right| = 6.$

- a) Give the Cartesian equation of the sphere.
- b) Does the point (2, 1, -5) lie inside, outside or on the sphere? Justify your answer.

Question 2 (3 marks)

The points *A*, *B* and *C* have coordinates (2, 1, -1), (-2, 4, -2) and (a, -5, 1) respectively, relative to the origin *O*, where $a \neq 10$.

Given $\overrightarrow{AB} \times \overrightarrow{AC} = (10 - a)\underline{j} + 3(10 - a)\underline{k}$ and the area of triangle *ABC* is $4\sqrt{10}$ square units, find the possible values of the constant *a*.

[2]

[1]

Question 3 (5 marks)

Solve the following system of equations by first forming an augmented matrix. Show each row operation beside the matrix.

$$x + y + z = 1$$
$$2x + y - z = -3$$
$$3x + 2y + z = 1$$

[5]

Question 4 (11 marks)

Referred to an origin O, the points A, B, C and D have coordinates (1, 1, 0), (3, 2, 5), (0, -1, -4) and (-2, -5, 0) respectively.

a) Find the vector equation of the plane \prod passing through *A*, *B* and *C*.

	[5]
The line l passes through D and is perpendicular to \prod .	
b) State a vector equation of l .	
	[4]
	[1]
The line l meets the plane \prod at the point E .	
c) Find the coordinates of <i>E</i> .	

The point *F* is the reflection of *D* in \prod .

d) Find the coordinates of *F*.

[2]

[3]

Calculator assumed section Suggested time: ~25 minutes Question 5 (8 marks)

The planes \prod_1 and \prod_2 are defined by the equations $\underline{r} \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = 5$ and x + 4y + z = -2.

a) Find, to the nearest degree, the acute angle between \prod_1 and \prod_2 .

The point *A* has coordinates (2, 1, -2).

b) Find the perpendicular distance between A and \prod_{1} .

The plane \prod_3 is perpendicular to \prod_1 and \prod_2 and the point with coordinates (0, 4, -1) lies on \prod_3 .

c) Find the Cartesian equation of $\prod_{3.}$

/26

[2]

[3]

Question 6 (6 marks)

A firework company is testing its new brand of firework. One of the company's employees lights the firework on a large area of horizontal ground and it takes off at a small angle to the vertical. After a flight lasting 8 seconds it lands at a distance of 24 metres from the launch point.

The employee models the firework as a particle and ignores air resistance and any loss of mass which the firework experiences.

Using this model, find for this flight of the firework:

- a) the initial velocity vector
- b) the initial speed, correct to 3 s.f.
- c) the maximum height attained

[2]

[3]

[1]

Question 7 (4 marks)

Determine the point of intersection of the two lines below. Explain your working.

$$\underline{r} = \begin{pmatrix} 8\\-1\\-8 \end{pmatrix} + \lambda \begin{pmatrix} 2\\0\\-3 \end{pmatrix} \text{ and } \underline{r} = \begin{pmatrix} 0\\1\\-3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$$

Question 8 (8 marks)

The position vector of a particle at time t seconds is given by $\underline{r} = (t^3 - 2t)\underline{i} + (t^2 - 3t)\underline{j}$.

a) Find the speed of the particle at time t = 3 seconds.

[3] b) Does the particle ever come to a stop? If so, when and where does it stop? If not, explain why not.

[3]

c) Find the position vector when the particle is moving parallel to the horizontal axis.

[2]